## organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## 2,3-Bis(ethylsulfanyl)-1,4,5,8-tetrathiafulvalene-6,7-dicarbonitrile

#### Rui-bin Hou and Dong-feng Li\*

School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, People's Republic of China Correspondence e-mail: lidongfeng@mail.ccut.edu.cn

Received 1 July 2011; accepted 16 July 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.031; wR factor = 0.109; data-to-parameter ratio = 20.2.

In the title compound,  $C_{12}H_{10}N_2S_6$ , all non-H atoms, except for those in the ethyl groups, lie in the same non-crystallographic plane, with a r.m.s. deviation of 0.0366 (5) Å. In the crystal structure, molecules are linked through weak C– H···N hydrogen bonds between methyl and cyano groups, forming centrosymmetric dimers. The dimers are arranged along the *a* axis, due to intermolecular N···S [3.337 (4) Å] interactions.

#### **Related literature**

For synthetic uses of dicyano-substituted tetrathiafulvalene derivatives, see: Chen *et al.* (2007); Leng *et al.* (2010). For a related structure, see: Jiang *et al.* (2010). For the synthesis of the title compound, see: Chen *et al.* (2005).



b = 8.9777 (18) Å

c = 12.618 (3) Å

 $\alpha = 76.48 (3)^{\circ}$ 

 $\beta = 77.59 \ (3)^{\circ}$ 

#### **Experimental**

Crystal data

| $C_{12}H_{10}N_2S_6$ |  |
|----------------------|--|
| $M_r = 374.58$       |  |
| Triclinic, P1        |  |
| a = 7.8357 (16)  Å   |  |

| $\gamma = 73.20 \ (3)^{\circ}$ |
|--------------------------------|
| $V = 815.8 (3) \text{ Å}^3$    |
| Z = 2                          |
| Mo $K\alpha$ radiation         |

#### Data collection

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.031$ 183 parameters $wR(F^2) = 0.109$ H-atom parameters constrainedS = 1.15 $\Delta \rho_{max} = 0.37$  e Å<sup>-3</sup>3689 reflections $\Delta \rho_{min} = -0.42$  e Å<sup>-3</sup>

 $\mu = 0.83 \text{ mm}^{-1}$ T = 293 K

 $R_{\rm int} = 0.022$ 

 $0.15 \times 0.13 \times 0.12 \text{ mm}$ 

8038 measured reflections

3689 independent reflections 3079 reflections with  $I > 2\sigma(I)$ 

| Table 1       |          |     |     |
|---------------|----------|-----|-----|
| Hydrogen-bond | geometry | (Å, | °). |

| $D - H \cdot \cdot \cdot A$                  | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |  |  |
|----------------------------------------------|------|-------------------------|--------------|--------------------------------------|--|--|
| $C10-H10C\cdots N2^{i}$                      | 0.96 | 2.73                    | 3.659 (4)    | 164                                  |  |  |
| Symmetry code: (i) $-x + 2, -y + 1, -z + 2.$ |      |                         |              |                                      |  |  |

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 21062022).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2367).

#### References

Chen, T., Wang, C. L., Cong, Z. Q., Yin, B. Z. & Imafuku, K. (2005). *Heterocycles*, 65, 187–193.

Chen, T., Wang, C. L., Qiu, H., Jin, L. Y., Yin, B. Z. & Imafuku, K. (2007). *Heterocycles*, **71**, 549–555.

- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Jiang, C.-P., Li, B., Yin, B.-Z. & Wu, L.-X. (2010). Acta Cryst. E66, o2079.
- Leng, F. S., Wang, X. S., Jin, L. Y. & Yin, B. Z. (2010). Dyes Pigm. 87, 89-94.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2011). E67, o2096 [doi:10.1107/S1600536811028601]

### 2,3-Bis(ethylsulfanyl)-1,4,5,8-tetrathiafulvalene-6,7-dicarbonitrile

#### R. Hou and D. Li

#### Comment

Dicyano-substituted tetrathiafulvalene derivatives (TTFs) are key precursors for the preparation of the TTF-annulated prophyrazines. We have recently synthesized the symmetrical (Chen *et al.*, 2007) and the unsymmetrical TTF-annulated porphyrazines (Leng *et al.*, 2010) using such precursors. In this paper, we report the crystal structure of the title compound.

In the title compound (Fig. 1), all bond lengths and angles are in the normal ranges and comparable with those observed in a closely related compound (Jiang *et al.*, 2010). In the title compound, except for two ethyl groups, all atoms lie on the same plane. In the crystal, the molecules form dimers through weak intermolecular C—H···N hydrogen bonds (Table 1), and dimers are arranged along the *a* axis, due to N···S interactions.

#### Experimental

The title compound was prepared according to the literature (Chen *et al.*, 2005). Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution in a mixture of dichloromethane and petroleum ether, at room temperature.

#### Refinement

C-bound H-atoms were placed in calculated positions (C—H 0.96 or 0.97 Å) and were included in the refinement in the riding model approximation, with  $U_{iso}(H) = 1.5 U_{eq}(C)$  for methyl groups and  $U_{iso}(H) = 1.2 U_{eq}(C)$  for methylene groups.

**Figures** 



Fig. 1. The crystal structure of the title compound, with displacement ellipsoids for non-H atoms drawn at the 20% probability level.

#### 2,3-Bis(ethylsulfanyl)-1,4,5,8-tetrathiafulvalene-6,7-dicarbonitrile

| Crystal data          |                                                       |
|-----------------------|-------------------------------------------------------|
| $C_{12}H_{10}N_2S_6$  | Z = 2                                                 |
| $M_r = 374.58$        | F(000) = 384                                          |
| Triclinic, <i>P</i> 1 | $D_{\rm x} = 1.525 {\rm ~Mg~m}^{-3}$                  |
| Hall symbol: -P 1     | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| a = 7.8357 (16)  Å    | Cell parameters from 3994 reflections                 |

b = 8.9777 (18) Å c = 12.618 (3) Å  $\alpha = 76.48 (3)^{\circ}$   $\beta = 77.59 (3)^{\circ}$   $\gamma = 73.20 (3)^{\circ}$  $V = 815.8 (3) \text{ Å}^{3}$ 

#### Data collection

| 3689 independent reflections                                              |
|---------------------------------------------------------------------------|
| 3079 reflections with $I > 2\sigma(I)$                                    |
| $R_{\rm int} = 0.022$                                                     |
| $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.2^{\circ}$ |
| $h = -10 \rightarrow 10$                                                  |
| $k = -11 \rightarrow 10$                                                  |
| $l = -16 \rightarrow 16$                                                  |
|                                                                           |

 $\theta = 3.2-27.5^{\circ}$  $\mu = 0.83 \text{ mm}^{-1}$ 

T = 293 K

Block, black

 $0.15\times0.13\times0.12~mm$ 

#### Refinement

| Refinement on $F^2$             | Primary atom site location: structure-invariant direct methods                                      |
|---------------------------------|-----------------------------------------------------------------------------------------------------|
| Least-squares matrix: full      | Secondary atom site location: difference Fourier map                                                |
| $R[F^2 > 2\sigma(F^2)] = 0.031$ | Hydrogen site location: inferred from neighbouring sites                                            |
| $wR(F^2) = 0.109$               | H-atom parameters constrained                                                                       |
| <i>S</i> = 1.15                 | $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0602P)^{2} + 0.1175P]$<br>where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ |
| 3689 reflections                | $(\Delta/\sigma)_{\rm max} = 0.001$                                                                 |
| 183 parameters                  | $\Delta \rho_{max} = 0.37 \text{ e } \text{\AA}^{-3}$                                               |
| 0 restraints                    | $\Delta \rho_{min} = -0.42 \text{ e } \text{\AA}^{-3}$                                              |
| 0 constraints                   |                                                                                                     |

|     | x          | у          | Ζ            | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|------------|------------|--------------|---------------------------|
| C1  | 1.3781 (3) | 0.3004 (3) | 1.17179 (18) | 0.0471 (5)                |
| C2  | 1.2353 (2) | 0.2956 (2) | 1.11964 (14) | 0.0346 (4)                |
| C3  | 1.0593 (2) | 0.3581 (2) | 1.15573 (14) | 0.0325 (4)                |
| C4  | 0.9973 (3) | 0.4385 (2) | 1.24706 (16) | 0.0404 (4)                |
| C5  | 1.0603 (2) | 0.2358 (2) | 0.99101 (14) | 0.0312 (4)                |
| C6  | 1.0078 (2) | 0.1834 (2) | 0.91471 (14) | 0.0314 (4)                |
| C7  | 0.8174 (3) | 0.1324 (2) | 0.78825 (14) | 0.0362 (4)                |
| C8  | 0.9902 (3) | 0.0668 (2) | 0.74847 (14) | 0.0348 (4)                |
| C9  | 1.2580 (3) | 0.0150 (3) | 0.56711 (17) | 0.0514 (5)                |
| H9A | 1.3429     | -0.0101    | 0.6183       | 0.062*                    |
| H9B | 1.3115     | -0.0489    | 0.5104       | 0.062*                    |

## Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(\hat{A}^2)$

| C10  | 1.2308 (4)  | 0.1859 (3)   | 0.5143 (2)   | 0.0673 (7)   |
|------|-------------|--------------|--------------|--------------|
| H10A | 1.1425      | 0.2134       | 0.4662       | 0.101*       |
| H10B | 1.3430      | 0.2042       | 0.4725       | 0.101*       |
| H10C | 1.1895      | 0.2499       | 0.5705       | 0.101*       |
| C11  | 0.5366 (3)  | 0.3331 (3)   | 0.6882 (2)   | 0.0658 (7)   |
| H11A | 0.4252      | 0.3457       | 0.6615       | 0.079*       |
| H11B | 0.5078      | 0.3900       | 0.7489       | 0.079*       |
| C12  | 0.6628 (5)  | 0.4051 (4)   | 0.5971 (3)   | 0.1003 (13)  |
| H12A | 0.7769      | 0.3859       | 0.6210       | 0.150*       |
| H12B | 0.6122      | 0.5171       | 0.5789       | 0.150*       |
| H12C | 0.6801      | 0.3584       | 0.5333       | 0.150*       |
| N1   | 1.4901 (3)  | 0.3032 (3)   | 1.21488 (19) | 0.0733 (6)   |
| N2   | 0.9451 (3)  | 0.5027 (2)   | 1.31940 (17) | 0.0632 (5)   |
| S1   | 1.28831 (6) | 0.20402 (6)  | 1.00515 (4)  | 0.03914 (14) |
| S2   | 0.89965 (6) | 0.33925 (6)  | 1.08715 (4)  | 0.03802 (14) |
| S3   | 0.77877 (6) | 0.21620 (6)  | 0.90659 (4)  | 0.04141 (14) |
| S4   | 1.15711 (6) | 0.07338 (6)  | 0.81983 (4)  | 0.03804 (14) |
| S5   | 0.62815 (7) | 0.12625 (7)  | 0.73859 (4)  | 0.04650 (16) |
| S6   | 1.05259 (8) | -0.03845 (7) | 0.64039 (4)  | 0.04750 (16) |
|      |             |              |              |              |

## Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$      | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|---------------|--------------|
| C1  | 0.0377 (10) | 0.0631 (13) | 0.0461 (11) | -0.0110 (10) | -0.0063 (9)   | -0.0232 (10) |
| C2  | 0.0360 (9)  | 0.0404 (9)  | 0.0320 (9)  | -0.0122 (8)  | -0.0083 (7)   | -0.0094 (7)  |
| C3  | 0.0369 (9)  | 0.0348 (9)  | 0.0290 (8)  | -0.0107 (7)  | -0.0058 (7)   | -0.0090(7)   |
| C4  | 0.0420 (10) | 0.0436 (10) | 0.0369 (10) | -0.0073 (9)  | -0.0071 (8)   | -0.0136 (8)  |
| C5  | 0.0324 (8)  | 0.0345 (9)  | 0.0288 (8)  | -0.0090 (7)  | -0.0058 (7)   | -0.0081 (7)  |
| C6  | 0.0341 (8)  | 0.0355 (9)  | 0.0274 (8)  | -0.0107 (7)  | -0.0068 (7)   | -0.0070 (7)  |
| C7  | 0.0404 (9)  | 0.0443 (10) | 0.0301 (9)  | -0.0177 (8)  | -0.0111 (7)   | -0.0050(7)   |
| C8  | 0.0434 (9)  | 0.0416 (9)  | 0.0255 (8)  | -0.0183 (8)  | -0.0084 (7)   | -0.0060(7)   |
| C9  | 0.0471 (11) | 0.0647 (14) | 0.0430 (11) | -0.0095 (11) | 0.0012 (9)    | -0.0245 (10) |
| C10 | 0.0797 (18) | 0.0730 (16) | 0.0516 (14) | -0.0346 (14) | 0.0086 (12)   | -0.0144 (12) |
| C11 | 0.0585 (14) | 0.0618 (15) | 0.0846 (18) | -0.0060 (12) | -0.0410 (14)  | -0.0121 (13) |
| C12 | 0.115 (3)   | 0.085 (2)   | 0.110 (3)   | -0.050 (2)   | -0.065 (2)    | 0.0395 (19)  |
| N1  | 0.0473 (11) | 0.1120 (18) | 0.0767 (15) | -0.0167 (12) | -0.0174 (11)  | -0.0453 (14) |
| N2  | 0.0704 (13) | 0.0684 (13) | 0.0527 (12) | -0.0068 (11) | -0.0075 (10)  | -0.0303 (10) |
| S1  | 0.0314 (2)  | 0.0513 (3)  | 0.0399 (3)  | -0.0088(2)   | -0.00407 (19) | -0.0216 (2)  |
| S2  | 0.0303 (2)  | 0.0491 (3)  | 0.0386 (3)  | -0.0089 (2)  | -0.00466 (18) | -0.0176 (2)  |
| S3  | 0.0336 (2)  | 0.0591 (3)  | 0.0365 (3)  | -0.0109 (2)  | -0.00710 (19) | -0.0180 (2)  |
| S4  | 0.0348 (2)  | 0.0504 (3)  | 0.0336 (3)  | -0.0103 (2)  | -0.00648 (18) | -0.0162 (2)  |
| S5  | 0.0454 (3)  | 0.0585 (3)  | 0.0465 (3)  | -0.0236 (3)  | -0.0173 (2)   | -0.0084 (2)  |
| S6  | 0.0633 (3)  | 0.0552 (3)  | 0.0346 (3)  | -0.0267 (3)  | -0.0028 (2)   | -0.0185 (2)  |
|     |             |             |             |              |               |              |

## Geometric parameters (Å, °)

| C1—N1 | 1.136 (3) | C8—S4  | 1.7606 (18) |
|-------|-----------|--------|-------------|
| C1—C2 | 1.430 (3) | C9—C10 | 1.496 (3)   |
| C2—C3 | 1.352 (3) | C9—S6  | 1.810 (2)   |

# supplementary materials

| C3-C4 1.425 (2) C9-H9B 0.9700   C3-S2 1.7314 (18) C10-H10A 0.9600   C4-N2 1.132 (3) C10-H10B 0.9600   C5-C6 1.346 (2) C10-H10C 0.9600   C5-S2 1.7646 (19) C11-C12 1.500 (4)   C5-S1 1.7673 (18) C11-H11B 0.9700   C6-S3 1.7543 (18) C11-H11B 0.9700   C7-C8 1.348 (3) C12-H12A 0.9600   C7-S3 1.7543 (18) C12-H12B 0.9600   C7-S3 1.7569 (19) C12-H12C 0.9600   C8-S6 1.7439 (19) V1 V1 V1   N1-C1-C2 178.9 (3) H9A-C9-H9B 107.7   C3-C2-C1 122.92 (17) C9-C10-H10A 109.5   C1-C2-S1 119.09 (15) H10A-C10-H10C 109.5   C1-C2-S1 119.09 (15) H10A-C10-H10C 109.5   C2-C3-S2 118.14 (13) H10A-C10-H10C 109.5   C4-C3-S2 118.05 (14) H10A-C10-H10C 109.5   C4-C3-S2 123.79 (15) S5-C11-                                                                                                                                                                                                                                                                                             | C2—81                      | 1 7423 (19) | С9—Н9А        | 0 9700      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------|---------------|-------------|
| C3-S2 1.7314 (18) C10-H10A 0.9600   C4-N2 1.132 (3) C10-H10B 0.9600   C5-C6 1.346 (2) C10-H10C 0.9600   C5-S1 1.7646 (19) C11-C12 1.500 (4)   C5-S1 1.7643 (18) C11-S5 1.800 (3)   C6-S3 1.7495 (19) C11-H11A 0.9700   C7-C8 1.348 (3) C12-H12A 0.9600   C7-S5 1.7483 (18) C12-H12A 0.9600   C7-S5 1.7483 (18) C12-H12A 0.9600   C7-S3 1.759 (19) C1-H11B 0.9700   C8-S6 1.7493 (19) V V V   NI-C1-C2 178.9 (3) H9A-C9-H9B 107.7 C3-C2-C1 122.92 (17) C9-C10-H10A 109.5   C3-C2-C1 122.92 (17) C9-C10-H10A 109.5 C3-C2-S1 119.90 (15) H10A-C10-H10E 109.5   C1-C2-S1 119.90 (15) H10A-C10-H10C 109.5 C3-C3-S2 118.14 (13) H10A-C10-H10C 109.5   C3-C4-C3 178.8 (2) C12-C11-S5 113.3 (2) C6-C5-S1                                                                                                                                                                                                                                                                                 | C3—C4                      | 1 425 (2)   | C9—H9B        | 0.9700      |
| C4-N2 1.132 (3) C10-H10B 0.9600   C5-C6 1.346 (2) C10-H10C 0.9600   C5-S1 1.7646 (19) C11-C12 1.500 (4)   C5-S1 1.7673 (18) C11-S5 1.800 (3)   C6-S4 1.7495 (19) C11-H11A 0.9700   C6-S3 1.7483 (18) C12-H12A 0.9600   C7-C8 1.348 (3) C12-H12A 0.9600   C7-S5 1.7439 (19) C12-H12A 0.9600   C7-S3 1.7569 (19) C12-H12A 0.9600   C7-S4 1.348 (3) C12-H12A 0.9600   C3-C2-C1 122.92 (17) C9-C10-H10A 109.5   C3-C2-C1 122.92 (17) C9-C10-H10A 109.5   C1-C2-S1 119.99 (14) C9-C10-H10B 109.5   C1-C2-S1 112.81 (17) C9-C10-H10C 109.5   C2-C3-C4 123.81 (17) C9-C10-H10C 109.5   C4-C3-S2 118.05 (14) H10A-C10-H10C 109.5   C4-C3-S2 123.79 (15) S5-C11-H11A 108.9   C6-C5-S1 123.79 (15) S5-C11-H11                                                                                                                                                                                                                                                                              | C3—S2                      | 1 7314 (18) | C10—H10A      | 0.9600      |
| CS-C6 1.346 (2) C10-H10C 0.9600   CS-S2 1.7646 (19) C11-C12 1.500 (4)   CS-S1 1.7673 (18) C11-S5 1.800 (3)   C6-S4 1.7495 (19) C11-H11A 0.9700   C6-S3 1.7543 (18) C11-H11B 0.9700   C7-C8 1.348 (3) C12-H12A 0.9600   C7-S5 1.7439 (19) C12-H12A 0.9600   C8-S6 1.7499 (19) C12-H12C 0.9600   C8-S6 1.7439 (19) C12-H12C 0.9600   N1-C1-C2 178.9 (3) H9A-C9-H9B 107.7   C3-C2-C1 122.92 (17) C9-C10-H10A 109.5   C3-C2-S1 119.99 (15) H10A-C10-H10B 109.5   C1-C2-S1 119.99 (14) C9-C10-H10C 109.5   C2-C3-C4 123.81 (17) C9-C10-H10C 109.5   C4-C3-S2 118.14 (13) H10A-C10-H10C 109.5   C4-C3-S2 123.79 (15) S5-C11-H11A 108.9   C5-C6-S4 123.86 (14) S5-C11-H11A 108.9   C5-C6-S3 121.49 (15) H1                                                                                                                                                                                                                                                                              | C4—N2                      | 1.132 (3)   | C10—H10B      | 0.9600      |
| C5 17.446 (19) C11—C12 1.500 (4)   C5 1.7646 (19) C11—C12 1.500 (4)   C5 1.7643 (18) C11—H11A 0.9700   C6 53 1.7543 (18) C11—H11B 0.9700   C7 C8 1.348 (3) C12—H12A 0.9600   C7 C8 1.348 (3) C12—H12A 0.9600   C7 S5 1.7483 (18) C12—H12A 0.9600   C8 S6 1.749 (19) V V V   N1—C1—C2 178.9 (3) H9A—C9—H9B 107.7 C3—C2—C1 122.92 (17) C9—C10—H10A 109.5   C3—C2—C1 122.92 (17) C9—C10—H10A 109.5 C2—C3—S2 118.14 (13) H10A—C10—H10B 109.5   C2—C3—C4 123.81 (17) C9—C10—H10C 109.5 C2—C3—S2 118.14 (13) H10A—C10—H10C 109.5   C4—C3 123.81 (17) C9—C10—H10C 109.5 S2—C4—C3 13.3 (2) C6—C5—S1 123.79 (15) S5—C11—H11A 108.9 S2—C5—S1 123.79 (15) S5—C11—H11A 108.9 S2—C5—S1 123.86 (14)                                                                                                                                                                                                                                                                                            | C5—C6                      | 1.346 (2)   | C10—H10C      | 0.9600      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C5—S2                      | 1.7646 (19) | C11—C12       | 1.500 (4)   |
| C6-S4 1.7495 (19) C11-H11A 0.9700   C6-S3 1.7543 (18) C11-H11B 0.9700   C7-C8 1.348 (3) C12-H12A 0.9600   C7-S5 1.7483 (18) C12-H12B 0.9600   C7-S5 1.749 (19) C12-H12C 0.9600   C8-S6 1.7439 (19) V V   N1-C1-C2 178.9 (3) H9A-C9-H9B 107.7   C3-C2-C1 122.92 (17) C9-C10-H10A 109.5   C1-C2-S1 119.09 (15) H10A-C10-H10B 109.5   C1-C2-S1 119.09 (15) H10A-C10-H10C 109.5   C2-C3-C4 123.81 (17) C9-C10-H10C 109.5   C4-C3-S2 118.14 (13) H10A-C10-H10C 109.5   C4-C3-S2 118.14 (13) H10A-C10-H10C 109.5   S2-C5-S1 123.79 (15) S5-C11-H11A 108.9   C5-C6-S3 115.42 (10) C12-C11-H11A 108.9   C5-C6-S3 123.86 (14) S5-C11-H11B 108.9   C5-C6-S3 124.99 (15) H11A-C11-H11B 109.5   C8-C7-S5 125.25 (15)                                                                                                                                                                                                                                                                         | C5—S1                      | 1.7673 (18) | C11—S5        | 1.800 (3)   |
| C6-S31.7543 (18)C11-H11B0.9700C7-C81.348 (3)C12-H12A0.9600C7-S51.7483 (18)C12-H12B0.9600C7-S31.7569 (19)C12-H12C0.9600C8-S61.7439 (19)N1-C1-C2178.9 (3)H9A-C9-H9B107.7C3-C2-C1122.92 (17)C9-C10-H10A109.5C3-C2-S1117.99 (14)C9-C10-H10B109.5C1-C2-S1119.09 (15)H10A-C10-H10B109.5C2-C3-C4123.81 (17)C9-C10-H10C109.5C2-C3-S2118.14 (13)H10A-C10-H10C109.5C4-C3-S2118.05 (14)H10B-C10-H10C109.5C4-C3-S2123.79 (15)S5-C11-H11A108.9S2-C5-S1123.79 (15)S5-C11-H11A108.9S2-C5-S1123.79 (15)S5-C11-H11B108.9C5-C6-S3121.49 (15)H11A-C11-H11B108.9C5-C6-S3121.49 (15)H11A-C11-H11B109.5C8-C7-S3117.9 (14)H12A-C12-H12B109.5C7-C8-S6123.52 (15)C11-C12-H12B109.5C7-C8-S4116.94 (14)H12B-C12-H12B109.5C7-C8-S4113.94 (17)C3-S2-C594.40 (9)C10-C9-S6113.94 (17)C3-S2-C594.40 (8)C10-C9-H9A108.8C6-S3-C795.39 (9)S6-C9-H9A108.8C6-S3-C795.39 (9)S6-C9-H9B108.8C6-S3-C11101.18 (10)S6-C9-H9B108.8C6-S3-C11101.18 (10) <td>C6—S4</td> <td>1.7495 (19)</td> <td>C11—H11A</td> <td>0.9700</td> | C6—S4                      | 1.7495 (19) | C11—H11A      | 0.9700      |
| C7-C8 1.348 (3) C12-H12A 0.9600   C7-S5 1.7433 (18) C12-H12B 0.9600   C7-S3 1.7569 (19) C12-H12C 0.9600   C8-S6 1.7439 (19) NI NI 0.9600   N1-C1-C2 178.9 (3) H9A-C9-H9B 107.7   C3-C2-C1 122.92 (17) C9-C10-H10A 109.5   C1-C2-S1 117.99 (14) C9-C10-H10B 109.5   C1-C2-S1 119.09 (15) H10A-C10-H10C 109.5   C2-C3-C4 123.81 (17) C9-C10-H10C 109.5   C2-C3-S2 118.14 (13) H10A-C10-H10C 109.5   C4-C3-S2 118.05 (14) H10B-C10-H10C 109.5   C4-C3-S2 118.05 (14) H10B-C10-H10C 109.5   C6-C5-S1 123.79 (15) S5-C11-H11A 108.9   C5-C6-S4 123.86 (14) S5-C11-H11A 108.9   C5-C6-S3 121.49 (15) H11A-C11-H11B 108.9   C5-C6-S3 123.52 (15) C11-C12-H12A 109.5   C8-C7-S3 117.44 (11) C11-C12-H12B 109.5   C8-C7-S4<                                                                                                                                                                                                                                                               | C6—S3                      | 1.7543 (18) | C11—H11B      | 0.9700      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C7—C8                      | 1.348 (3)   | C12—H12A      | 0.9600      |
| C7-S31.7569 (19)C12-H12C0.9600C8-S61.7439 (19)N1-C1-C2178.9 (3)H9A-C9-H9B107.7C3-C2-C1122.92 (17)C9-C10-H10A109.5C3-C2-S1117.99 (14)C9-C10-H10B109.5C1-C2-S1119.09 (15)H10A-C10-H10B109.5C2-C3-C4123.81 (17)C9-C10-H10C109.5C2-C3-S2118.14 (13)H10A-C10-H10C109.5C4-C3-S2118.05 (14)H10B-C10-H10C109.5N2-C4-C3178.8 (2)C12-C11-S5113.3 (2)C6-C5-S1123.79 (15)S5-C11-H11A108.9C5-C6-S4123.86 (14)S5-C11-H11B108.9C5-C6-S3121.49 (15)H11A-C11-H11B108.9C5-C6-S3117.39 (14)C11-C12-H12A109.5C8-C7-S3117.19 (14)H12A-C12-H12B109.5C7-C8-S6123.52 (14)C11-C12-H12B109.5C7-C8-S6123.52 (14)H12A-C12-H12C109.5C7-C8-S4116.94 (14)H12B-C12-H12C109.5C7-C8-S4113.94 (17)C3-S2-C594.04 (9)C10-C9-H9A108.8C6-S3-C795.39 (9)S6-C9-H9A108.8C6-S3-C795.39 (9)S6-C9-H9B108.8C7-S5-C11101.18 (10)S6-C9-H9B108.8C7-S5-C11101.18 (10)S6-C9-H9B108.8C7-S5-C11101.18 (10)S6-C9-H9B108.8C7-S5-C11101.18 (10)                                                                                          | C7—S5                      | 1.7483 (18) | C12—H12B      | 0.9600      |
| C8=S6 1.7439 (19)   N1-C1-C2 178.9 (3) H9A-C9-H9B 107.7   C3-C2-C1 122.92 (17) C9-C10-H10A 109.5   C3-C2-S1 117.99 (14) C9-C10-H10B 109.5   C1-C2-S1 119.09 (15) H10A-C10-H10B 109.5   C2-C3-C4 123.81 (17) C9-C10-H10C 109.5   C2-C3-C4 123.81 (13) H10A-C10-H10C 109.5   C4-C3-S2 118.14 (13) H10A-C10-H10C 109.5   C4-C3-S2 118.16 (14) H10B-C10-H10C 109.5   C4-C3-S2 120.78 (14) C12-C11-S5 113.3 (2)   C6-C5-S1 123.79 (15) S5-C11-H11A 108.9   C5-C6-S4 123.86 (14) S5-C11-H11B 108.9   C5-C6-S3 121.49 (15) H11A-C11-H11B 107.7   S4-C6-S3 114.62 (10) C11-C12-H12A 109.5   C8-C7-S3 117.34 (11) C11-C12-H12B 109.5   C8-C7-S3 117.34 (11) C11-C12-H12B 109.5   C7-C8-S4 123.52 (14) H12A-C12-H12C 109.5   C7-C8-S4 19.23 (11)                                                                                                                                                                                                                                           | C7—S3                      | 1.7569 (19) | C12—H12C      | 0.9600      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C8—S6                      | 1.7439 (19) |               |             |
| C3-C2-C1122.92 (17)C9-C10-H10A109.5C3-C2-S1117.99 (14)C9-C10-H10B109.5C1-C2-S1119.09 (15)H10A-C10-H10B109.5C2-C3-C4123.81 (17)C9-C10-H10C109.5C2-C3-S2118.14 (13)H10A-C10-H10C109.5C4-C3-S2118.05 (14)H10B-C10-H10C109.5N2-C4-C3178.8 (2)C12-C11-S5113.3 (2)C6-C5-S1123.79 (15)S5-C11-H11A108.9C6-C5-S1115.42 (10)C12-C11-H11B108.9C5-C6-S4123.86 (14)S5-C11-H11B108.9C5-C6-S3121.49 (15)H11A-C11-H11B108.9C8-C7-S5125.25 (15)C11-C12-H12A109.5C8-C7-S3117.19 (14)H12A-C12-H12B109.5C7-C8-S6123.52 (14)H12A-C12-H12C109.5C7-C8-S4116.94 (14)H12B-C12-H12C109.5C7-C8-S4113.94 (11)C11-C12-H12C109.5C7-C8-S4113.94 (17)C3-S2-C594.40 (8)C10-C9-H9A108.8C6-S3-C795.39 (9)S6-C9-H9A108.8C6-S3-C795.39 (9)S6-C9-H9A108.8C7-S5-C11101.18 (10)S6-C9-H9B108.8C7-S5-C11101.18 (10)S6-C9-H9B108.8C7-S5-C11101.18 (10)                                                                                                                                                                      | N1—C1—C2                   | 178.9 (3)   | H9A—C9—H9B    | 107.7       |
| C3C2S1117.99 (14)C9C10H10B109.5C1C2S1119.09 (15)H10AC10H10B109.5C2C3C4123.81 (17)C9C10H10C109.5C2C3S2118.14 (13)H10AC10H10C109.5C4C3S2118.05 (14)H10BC10H10C109.5N2C4C3178.8 (2)C12C11S5113.3 (2)C6C5S2120.78 (14)C12C11H11A108.9C6C5S1123.79 (15)S5C11H11A108.9C5C6S4123.86 (14)S5C11H11B108.9C5C6S3121.49 (15)H11AC11H11B108.9C5C6S3125.25 (15)C11C12H12A109.5C8C7S5125.25 (15)C11C12H12B109.5C7C8S6123.52 (14)H12AC12H12B109.5C7C8S4116.94 (14)H12BC12H12C109.5C7C8S4116.94 (14)H12BC12H12C109.5C7C8S4113.94 (17)C3S2C594.04 (9)C10C9H9A108.8C6S3C795.39 (9)S6C9H9B108.8C6S4C895.48 (9)C10C9H9B108.8C6S4C9102.91 (10)                                                                                                                                                                                                                                                                                                                                                         | C3—C2—C1                   | 122.92 (17) | C9—C10—H10A   | 109.5       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C3—C2—S1                   | 117.99 (14) | C9—C10—H10B   | 109.5       |
| C2C3C4123.81 (17)C9C10H10C109.5C2C3S2118.14 (13)H10AC10H10C109.5C4C3S2118.05 (14)H10BC10H10C109.5N2C4C3178.8 (2)C12C11S5113.3 (2)C6C5S2120.78 (14)C12C11H11A108.9C6C5S1123.79 (15)S5C11H11A108.9S2C5S1115.42 (10)C12C11H11B108.9C5C6S4123.86 (14)S5C11H11B108.9C5C6S3121.49 (15)H11AC11H11B109.5C8C7S5125.25 (15)C11C12H12A109.5C8C7S3117.19 (14)H12AC12H12B109.5C7C8S4123.52 (14)H12AC12H12B109.5C7C8S4116.94 (14)H12BC12H12C109.5S6C8S4119.23 (11)C2S1C594.04 (9)C10C9H9A108.8C6S3C795.39 (9)S6C9H9A108.8C6S3C795.39 (9)S6C9H9B108.8C6S4C895.48 (9)C10C9H9B108.8C6S4C9102.91 (10)                                                                                                                                                                                                                                                                                                                                                                                              | C1—C2—S1                   | 119.09 (15) | H10A—C10—H10B | 109.5       |
| C2-C3-S2118.14 (13)H10A-C10-H10C109.5C4-C3-S2118.05 (14)H10B-C10-H10C109.5N2-C4-C3178.8 (2)C12-C11-S5113.3 (2)C6-C5-S2120.78 (14)C12-C11-H11A108.9C6-C5-S1123.79 (15)S5-C11-H11A108.9S2-C5-S1115.42 (10)C12-C11-H11B108.9C5-C6-S4123.86 (14)S5-C11-H11B108.9C5-C6-S3121.49 (15)H11A-C11-H11B109.5C8-C7-S5125.25 (15)C11-C12-H12A109.5C8-C7-S3117.19 (14)H12A-C12-H12B109.5C7-C8-S6123.52 (14)H12A-C12-H12C109.5C7-C8-S4116.94 (14)H12B-C12-H12C109.5C7-C8-S4119.23 (11)C2-S1-C594.04 (9)C10-C9-H9A108.8C6-S3-C795.39 (9)S6-C9-H9A108.8C6-S3-C795.39 (9)S6-C9-H9B108.8C7-S5-C11101.18 (10)S6-C9-H9B108.8C7-S5-C11101.18 (10)S6-C9-H9B108.8C8-S6-C9102.91 (10)                                                                                                                                                                                                                                                                                                                     | C2—C3—C4                   | 123.81 (17) | C9—C10—H10C   | 109.5       |
| C4—C3—S2118.05 (14)H10B—C10—H10C109.5N2—C4—C3178.8 (2)C12—C11—S5113.3 (2)C6—C5—S2120.78 (14)C12—C11—H11A108.9C6—C5—S1123.79 (15)S5—C11—H11A108.9S2—C5—S1115.42 (10)C12—C11—H11B108.9C5—C6—S4123.86 (14)S5—C11—H11B108.9C5—C6—S3121.49 (15)H11A—C11—H11B107.7S4—C6—S3114.62 (10)C11—C12—H12A109.5C8—C7—S5125.25 (15)C11—C12—H12B109.5C8—C7—S3117.19 (14)H12A—C12—H12B109.5C7—C8—S6123.52 (14)H12A—C12—H12C109.5C7—C8—S4116.94 (14)H12B—C12—H12C109.5C7—C8—S4119.23 (11)C2—S1—C594.04 (9)C10—C9—H9A108.8C6—S3—C795.39 (9)S6—C9—H9A108.8C6—S4—C895.48 (9)C10—C9—H9B108.8C6—S4—C895.48 (9)C10—C9—H9B108.8C6—S4—C9102.91 (10)                                                                                                                                                                                                                                                                                                                                                         | C2—C3—S2                   | 118.14 (13) | H10A—C10—H10C | 109.5       |
| N2-C4-C3178.8 (2)C12-C11-S5113.3 (2)C6-C5-S2120.78 (14)C12-C11-H11A108.9C6-C5-S1123.79 (15)S5-C11-H11A108.9S2-C5-S1115.42 (10)C12-C11-H11B108.9C5-C6-S4123.86 (14)S5-C11-H11B108.9C5-C6-S3121.49 (15)H11A-C11-H11B107.7S4-C6-S3114.62 (10)C11-C12-H12A109.5C8-C7-S5125.25 (15)C11-C12-H12B109.5C8-C7-S3117.19 (14)H12A-C12-H12B109.5C7-C8-S6123.52 (14)H12A-C12-H12C109.5C7-C8-S4116.94 (14)H12B-C12-H12C109.5C7-C8-S4116.94 (14)H12B-C12-H12C109.5C10-C9-H9A108.8C6-S3-C795.39 (9)S6-C9-H9A108.8C6-S3-C795.39 (9)S6-C9-H9B108.8C6-S4-C895.48 (9)C10-C9-H9B108.8C6-S4-C9102.91 (10)                                                                                                                                                                                                                                                                                                                                                                                              | C4—C3—S2                   | 118.05 (14) | H10B—C10—H10C | 109.5       |
| C6—C5—S2120.78 (14)C12—C11—H11A108.9C6—C5—S1123.79 (15)S5—C11—H11A108.9S2—C5—S1115.42 (10)C12—C11—H11B108.9C5—C6—S4123.86 (14)S5—C11—H11B108.9C5—C6—S3121.49 (15)H11A—C11—H11B107.7S4—C6—S3114.62 (10)C11—C12—H12A109.5C8—C7—S5125.25 (15)C11—C12—H12B109.5C8—C7—S3117.19 (14)H12A—C12—H12B109.5C7—C8—S6123.52 (14)H12A—C12—H12C109.5C7—C8—S4116.94 (14)H12B—C12—H12C109.5C6—C5—S4119.23 (11)C2—S1—C594.04 (9)C10—C9—S6113.94 (17)C3—S2—C594.40 (8)C10—C9—H9A108.8C6—S3—C795.39 (9)S6—C9—H9A108.8C6—S4—C895.48 (9)C10—C9—H9B108.8C8—S6—C9102.91 (10)                                                                                                                                                                                                                                                                                                                                                                                                                             | N2—C4—C3                   | 178.8 (2)   | C12—C11—S5    | 113.3 (2)   |
| C6—C5—S1123.79 (15)S5—C11—H11A108.9S2—C5—S1115.42 (10)C12—C11—H11B108.9C5—C6—S4123.86 (14)S5—C11—H11B107.7S4—C6—S3121.49 (15)H11A—C11—H11B107.7S4—C6—S3114.62 (10)C11—C12—H12A109.5C8—C7—S5125.25 (15)C11—C12—H12B109.5C7—C8—S3117.19 (14)H12A—C12—H12B109.5C7—C8—S6123.52 (14)H12A—C12—H12C109.5C7—C8—S4116.94 (14)H12B—C12—H12C109.5S6—C8—S4119.23 (11)C2—S1—C594.04 (9)C10—C9—H9A108.8C6—S3—C795.39 (9)S6—C9—H9A108.8C6—S4—C895.48 (9)C10—C9—H9B108.8C7—S5—C11101.18 (10)S6—C9—H9B108.8C8—S6—C9102.91 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C6—C5—S2                   | 120.78 (14) | C12—C11—H11A  | 108.9       |
| S2—C5—S1115.42 (10)C12—C11—H11B108.9C5—C6—S4123.86 (14)S5—C11—H11B108.9C5—C6—S3121.49 (15)H11A—C11—H11B107.7S4—C6—S3114.62 (10)C11—C12—H12A109.5C8—C7—S5125.25 (15)C11—C12—H12B109.5C8—C7—S3117.19 (14)H12A—C12—H12B109.5C7—C8—S6123.52 (14)H12A—C12—H12C109.5C7—C8—S4116.94 (14)H12B—C12—H12C109.5S6—C8—S4119.23 (11)C2—S1—C594.04 (9)C10—C9—H9A108.8C6—S3—C795.39 (9)S6—C9—H9A108.8C6—S4—C895.48 (9)C10—C9—H9B108.8C8—S6—C9102.91 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C6—C5—S1                   | 123.79 (15) | S5-C11-H11A   | 108.9       |
| C5—C6—S4123.86 (14)S5—C11—H11B108.9C5—C6—S3121.49 (15)H11A—C11—H11B107.7S4—C6—S3114.62 (10)C11—C12—H12A109.5C8—C7—S5125.25 (15)C11—C12—H12B109.5C8—C7—S3117.19 (14)H12A—C12—H12B109.5S5—C7—S3117.34 (11)C11—C12—H12C109.5C7—C8—S6123.52 (14)H12A—C12—H12C109.5C7—C8—S4116.94 (14)H12B—C12—H12C109.5S6—C8—S4119.23 (11)C2—S1—C594.04 (9)C10—C9—H9A108.8C6—S3—C795.39 (9)S6—C9—H9A108.8C6—S4—C895.48 (9)C10—C9—H9B108.8C7—S5—C11101.18 (10)S6—C9—H9B108.8C8—S6—C9102.91 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S2—C5—S1                   | 115.42 (10) | C12—C11—H11B  | 108.9       |
| C5—C6—S3121.49 (15)H11A—C11—H11B107.7S4—C6—S3114.62 (10)C11—C12—H12A109.5C8—C7—S5125.25 (15)C11—C12—H12B109.5C8—C7—S3117.19 (14)H12A—C12—H12B109.5S5—C7—S3117.34 (11)C11—C12—H12C109.5C7—C8—S6123.52 (14)H12A—C12—H12C109.5C7—C8—S4116.94 (14)H12B—C12—H12C109.5S6—C8—S4119.23 (11)C2—S1—C594.04 (9)C10—C9—S6113.94 (17)C3—S2—C594.40 (8)C10—C9—H9A108.8C6—S3—C795.39 (9)S6—C9—H9A108.8C7—S5—C11101.18 (10)S6—C9—H9B108.8C8—S6—C9102.91 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C5—C6—S4                   | 123.86 (14) | S5-C11-H11B   | 108.9       |
| S4—C6—S3114.62 (10)C11—C12—H12A109.5C8—C7—S5125.25 (15)C11—C12—H12B109.5C8—C7—S3117.19 (14)H12A—C12—H12B109.5S5—C7—S3117.34 (11)C11—C12—H12C109.5C7—C8—S6123.52 (14)H12A—C12—H12C109.5C7—C8—S4116.94 (14)H12B—C12—H12C109.5S6—C8—S4119.23 (11)C2—S1—C594.04 (9)C10—C9—S6113.94 (17)C3—S2—C594.40 (8)C10—C9—H9A108.8C6—S3—C795.39 (9)S6—C9—H9A108.8C6—S4—C895.48 (9)C10—C9—H9B108.8C7—S5—C11101.18 (10)S6—C9—H9B108.8C8—S6—C9102.91 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C5—C6—S3                   | 121.49 (15) | H11A—C11—H11B | 107.7       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S4—C6—S3                   | 114.62 (10) | C11—C12—H12A  | 109.5       |
| C8—C7—S3117.19 (14)H12A—C12—H12B109.5S5—C7—S3117.34 (11)C11—C12—H12C109.5C7—C8—S6123.52 (14)H12A—C12—H12C109.5C7—C8—S4116.94 (14)H12B—C12—H12C109.5S6—C8—S4119.23 (11)C2—S1—C594.04 (9)C10—C9—S6113.94 (17)C3—S2—C594.40 (8)C10—C9—H9A108.8C6—S3—C795.39 (9)S6—C9—H9A108.8C6—S4—C895.48 (9)C10—C9—H9B108.8C7—S5—C11101.18 (10)S6—C9—H9B108.8C8—S6—C9102.91 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C8—C7—S5                   | 125.25 (15) | C11—C12—H12B  | 109.5       |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C8—C7—S3                   | 117.19 (14) | H12A—C12—H12B | 109.5       |
| C7—C8—S6123.52 (14)H12A—C12—H12C109.5C7—C8—S4116.94 (14)H12B—C12—H12C109.5S6—C8—S4119.23 (11)C2—S1—C594.04 (9)C10—C9—S6113.94 (17)C3—S2—C594.40 (8)C10—C9—H9A108.8C6—S3—C795.39 (9)S6—C9—H9A108.8C6—S4—C895.48 (9)C10—C9—H9B108.8C7—S5—C11101.18 (10)S6—C9—H9B108.8C8—S6—C9102.91 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S5—C7—S3                   | 117.34 (11) | C11—C12—H12C  | 109.5       |
| C7—C8—S4116.94 (14)H12B—C12—H12C109.5S6—C8—S4119.23 (11)C2—S1—C594.04 (9)C10—C9—S6113.94 (17)C3—S2—C594.40 (8)C10—C9—H9A108.8C6—S3—C795.39 (9)S6—C9—H9A108.8C6—S4—C895.48 (9)C10—C9—H9B108.8C7—S5—C11101.18 (10)S6—C9—H9B108.8C8—S6—C9102.91 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C7—C8—S6                   | 123.52 (14) | H12A—C12—H12C | 109.5       |
| S6—C8—S4119.23 (11)C2—S1—C594.04 (9)C10—C9—S6113.94 (17)C3—S2—C594.40 (8)C10—C9—H9A108.8C6—S3—C795.39 (9)S6—C9—H9A108.8C6—S4—C895.48 (9)C10—C9—H9B108.8C7—S5—C11101.18 (10)S6—C9—H9B108.8C8—S6—C9102.91 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C7—C8—S4                   | 116.94 (14) | H12B—C12—H12C | 109.5       |
| C10—C9—S6113.94 (17)C3—S2—C594.40 (8)C10—C9—H9A108.8C6—S3—C795.39 (9)S6—C9—H9A108.8C6—S4—C895.48 (9)C10—C9—H9B108.8C7—S5—C11101.18 (10)S6—C9—H9B108.8C8—S6—C9102.91 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S6—C8—S4                   | 119.23 (11) | C2—S1—C5      | 94.04 (9)   |
| C10—C9—H9A 108.8 C6—S3—C7 95.39 (9)   S6—C9—H9A 108.8 C6—S4—C8 95.48 (9)   C10—C9—H9B 108.8 C7—S5—C11 101.18 (10)   S6—C9—H9B 108.8 C8—S6—C9 102.91 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C10—C9—S6                  | 113.94 (17) | C3—S2—C5      | 94.40 (8)   |
| S6—C9—H9A 108.8 C6—S4—C8 95.48 (9)   C10—C9—H9B 108.8 C7—S5—C11 101.18 (10)   S6—C9—H9B 108.8 C8—S6—C9 102.91 (10)   Hydrogen-bond geometry (Å, °) V V V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | С10—С9—Н9А                 | 108.8       | C6—S3—C7      | 95.39 (9)   |
| C10—C9—H9B 108.8 C7—S5—C11 101.18 (10)<br>S6—C9—H9B 108.8 C8—S6—C9 102.91 (10)<br>Hydrogen-bond geometry (Å, °)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S6—C9—H9A                  | 108.8       | C6—S4—C8      | 95.48 (9)   |
| S6—C9—H9B 108.8 C8—S6—C9 102.91 (10)<br>Hydrogen-bond geometry (Å, °)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | С10—С9—Н9В                 | 108.8       | C7—S5—C11     | 101.18 (10) |
| Hydrogen-bond geometry (Å, °)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S6—C9—H9B                  | 108.8       | C8—S6—C9      | 102.91 (10) |
| Hydrogen-bond geometry (Å, °)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |             |               |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Hydrogen-bond geometry (Å, | °)          |               |             |

| D—H···A                                  | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H··· $A$ |
|------------------------------------------|-------------|--------------|--------------|------------|
| C10—H10C····N2 <sup>i</sup>              | 0.96        | 2.73         | 3.659 (4)    | 164.       |
| Symmetry codes: (i) $-x+2, -y+1, -z+2$ . |             |              |              |            |



Fig. 1